题目内容
若(a+
x)10=a0+a1x+a2x2+…+a10x10,其中
=
;
(1)求实数a的值;
(2)求(a0+22a2+24a4+…+210a10)2-(2a1+23a3+25a5+…+29a9)2的值.
| 1 |
| 4 |
| a2 |
| a3 |
| 3 |
| 4 |
(1)求实数a的值;
(2)求(a0+22a2+24a4+…+210a10)2-(2a1+23a3+25a5+…+29a9)2的值.
分析:(1)根据题意,由二项式定理求出a2、a3的值,代入
=
中,可得关于a的方程,解可得答案;
(2)用赋值法,令x=2可得a0+2a1+22a2+23a3+…+210a10=0,令x=-2可得a0-2a1+22a2-23a3+…+210a10=1,再设A0=a0+22a2+…+210a10,A1=a1+23a3+…+29a9
将其代入(a0+22a2+24a4+…+210a10)2-(2a1+23a3+25a5+…+29a9)2中即可得答案.
| a2 |
| a3 |
| 3 |
| 4 |
(2)用赋值法,令x=2可得a0+2a1+22a2+23a3+…+210a10=0,令x=-2可得a0-2a1+22a2-23a3+…+210a10=1,再设A0=a0+22a2+…+210a10,A1=a1+23a3+…+29a9
将其代入(a0+22a2+24a4+…+210a10)2-(2a1+23a3+25a5+…+29a9)2中即可得答案.
解答:解:(1)根据题意,若(a+
x)10=a0+a1x+a2x2+…+a10x10,
则a2=C102=a8(-
)2,a3=C103a7(-
)3,
又由
=
,则有
=
=-
a,
解可得a=-
;
(2)对于(a+
x)10=a0+a1x+a2x2+…+a10x10,
令x=2可得,a0+2a1+22a2+23a3+…+210a10=0
令x=-2可得,a0-2a1+22a2-23a3+…+210a10=1
设A0=a0+22a2+…+210a10,A1=a1+23a3+…+29a9
∴A0+A1=0,A0-A1=-1,
则(a0+22a2+24a4+…+210a10)2-(2a1+23a3+25a5+…+29a9)2=
-
=(A0+A1)(A0-A1)=0
| 1 |
| 4 |
则a2=C102=a8(-
| 1 |
| 4 |
| 1 |
| 4 |
又由
| a2 |
| a3 |
| 3 |
| 4 |
| a2 |
| a3 |
| ||||
|
| 3 |
| 2 |
解可得a=-
| 1 |
| 2 |
(2)对于(a+
| 1 |
| 4 |
令x=2可得,a0+2a1+22a2+23a3+…+210a10=0
令x=-2可得,a0-2a1+22a2-23a3+…+210a10=1
设A0=a0+22a2+…+210a10,A1=a1+23a3+…+29a9
∴A0+A1=0,A0-A1=-1,
则(a0+22a2+24a4+…+210a10)2-(2a1+23a3+25a5+…+29a9)2=
| A | 2 0 |
| A | 2 1 |
点评:本题考查二项式定理的应用,解(2)的关键在于巧妙的运用赋值法,注意常见的赋值技巧.
练习册系列答案
相关题目