题目内容

设D是不等式组
x+2y≤10
2x+y≥3
0≤x≤4
y≥1
表示的平面区域,则D中的点P(x,y)到直线x+y=10距离的最大值是(  )
A、
8
3
3
B、
2
C、4
2
D、
8
2
3
分析:根据题意做出可行域,欲求区域D中的点到直线x+y=10的距离最大值,由其几何意义为区域D的点A(3,-2)到直线x+y=10的距离为所求,代入计算可得答案.
解答:精英家教网解:如图为
x+2y≤10
2x+y≥3
0≤x≤4
y≥1
表示的可行域(阴影部分),
由其几何意义为区域D的点A到直线x+y=10的距离最大,即为所求,由
2x+y=3
y=1
,解得A(1,1)
由点到直线的距离公式得:
d=
|1+1-10|
2
=4
2

则区域D中的点到直线x+y=10的距离最大值等于4
2

故选:C.
点评:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于中档题.巧妙识别目标函数的几何意义是我们研究规划问题的基础,纵观目标函数包括线性的与非线性,非线性问题的介入是线性规划问题的拓展与延伸,使得规划问题得以深化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网