题目内容
5.在直角坐标系xOy中,已知一动圆经过点(2,0)且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.(1)求曲线C的方程;
(2)过点(1,0)作互相垂直的两条直线l1,l2,l1与曲线C交于A,B两点l2与曲线C交于E,F两点,线段AB,EF的中点分别为M,N,求证:直线MN过定点P,并求出定点P的坐标.
分析 (1)设圆心C(x,y),依题意有x2+4=(x-2)2+y2,可求曲线C的方程;
(2)求出M,N的坐标,可得直线MN的方程,即可得到结论.
解答 (1)解:设圆心C(x,y),依题意有x2+4=(x-2)2+y2,即得y2=4x,
∴曲线C的方程为y2=4x.
(2)证明:设A(x1,y1),B(x2,y2),直线AB的方程为y=k(x-1),
代入y2=4x可得k2x2-2(k2+2)x+k2=0
∴x1+x2=$\frac{2({k}^{2}+2)}{{k}^{2}}$
∴xM=$\frac{{k}^{2}+2}{{k}^{2}}$,∴yM=k(xM-1)=$\frac{2}{k}$
∴M($\frac{{k}^{2}+2}{{k}^{2}}$,$\frac{2}{k}$).
∵AB⊥CD,∴将M坐标中的k换成-$\frac{1}{k}$,可得N(2k2+1,-2k)
∴直线MN的方程为y+2k=$\frac{-2k-\frac{2}{k}}{2{k}^{2}+1-\frac{{k}^{2}+2}{{k}^{2}}}$(x-2k2-1)
整理得(1-k2)y=k(x-3)
∴不论k为何值,直线MN必过定点P(3,0).
点评 本题主要考查抛物线的定义,考查直线恒过定点,考查学生分析解决问题的能力,确定直线的方程是关键.
练习册系列答案
相关题目
15.“对任意x∈(0,$\frac{π}{2}$),ksin$\frac{x}{2}$cos$\frac{x}{2}$>ln(x+1)”是“k≥2”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
13.已知集合A={a-2,2a2+5a,12},-3∈A,则a的值为( )
| A. | -1 | B. | $-\frac{3}{2}$ | C. | $-1或-\frac{3}{2}$ | D. | $-1或-\frac{3}{2}$ |
14.现有16张不同的卡片,其中红、黄、蓝、绿卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张的不同抽取方法有( )
| A. | 472 种 | B. | 484 种 | C. | 232 种 | D. | 252种 |