题目内容
设数列{an}、{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于
- A.0
- B.37
- C.100
- D.-37
C
设{an}、{bn}的公差分别为d1、d2,∵(an+1+bn+1)-(an+bn)=(an+1-an)+(bn+1-bn)=d1+d2,∴{an+bn}为等差数列.又a1+b1=a2+b2=100,∴a37+b37=100.
设{an}、{bn}的公差分别为d1、d2,∵(an+1+bn+1)-(an+bn)=(an+1-an)+(bn+1-bn)=d1+d2,∴{an+bn}为等差数列.又a1+b1=a2+b2=100,∴a37+b37=100.
练习册系列答案
相关题目