题目内容
某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?
解:设甲、乙两种产品分别生产x、y件,工厂获得的利润为z又已知条件可得二元一次不等式组:…………………………2分
![]()
…………5分
目标函数为z=2x+3y. ………6分
把z=2x+3y变形为
,这是斜率为
,在y轴上的截距为
的直线。当z变化时,可以得到一族互相平行的直线,当截距
最大时,z取得最大值,由上图可以看出,
, 当直线x=4与直线x+2y-8=0的交点M(4,2)时,截距
的值最大,最大值为
,这时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元。
……………………………………12分
练习册系列答案
相关题目
(1)试根据茎叶图所提供的数据,分别计算A、B两种产品为一等品的概率PA、PB;
(2)已知每件产品的利润如表一所示,用ξ、η分别表示一件A、B型产品的利润,在(1)的条件下,求ξ、η的分布列及数学期望(均值)Eξ、Eη;
(3)已知生产一件产品所需用的配件数和成本资金如表二所示,该厂有配件30件,可用资金40万元,设x、y分别表示生产A、B两种产品的数量,在(2)的条件下,求x、y为何值时,z=xEξ+yEη最大?最大值是多少?(解答时须给出图示)
表一
| 等级 利润 产品 |
一等品 | 二等品 |
| A型 | 4(万元) | 3(万元) |
| B型 | 3(万元) | 2(万元) |
| 项目 用量 产品 |
配件(件) | 资金(万元) |
| A型 | 6 | 4 |
| B型 | 2 | 8 |
某工厂生产A、B两种型号的产品,每种型号的产品在出厂时按质量分为一等品和二等品.为便于掌握生产状况,质检时将产品分为每20件一组,分别记录每组一等品的件数.现随机抽取了5组的质检记录,其一等品数茎叶图如图所示:
(1)试根据茎叶图所提供的数据,分别计算A、B两种产品为一等品的概率PA、PB;
(2)已知每件产品的利润如表一所示,用ξ、η分别表示一件A、B型产品的利润,在(1)的条件下,求ξ、η的分布列及数学期望(均值)Eξ、Eη;
(3)已知生产一件产品所需用的配件数和成本资金如表二所示,该厂有配件30件,可用资金40万元,设x、y分别表示生产A、B两种产品的数量,在(2)的条件下,求x、y为何值时,z=xEξ+yEη最大?最大值是多少?(解答时须给出图示)
| 等级 利润 产品 | 一等品 | 二等品 |
| A型 | 4(万元) | 3(万元) |
| B型 | 3(万元) | 2(万元) |
| 表二 |
| 表二 |
| 项目 用量 产品 | 配件(件) | 资金(万元) |
| A型 | 6 | 4 |
| B型 | 2 | 8 |
某工厂生产A、B两种型号的产品,每种型号的产品在出厂时按质量分为一等品和二等品.为便于掌握生产状况,质检时将产品分为每20件一组,分别记录每组一等品的件数.现随机抽取了5组的质检记录,其一等品数茎叶图如图所示:
(1)试根据茎叶图所提供的数据,分别计算A、B两种产品为一等品的概率PA、PB;
(2)已知每件产品的利润如表一所示,用ξ、η分别表示一件A、B型产品的利润,在(1)的条件下,求ξ、η的分布列及数学期望(均值)Eξ、Eη;
(3)已知生产一件产品所需用的配件数和成本资金如表二所示,该厂有配件30件,可用资金40万元,设x、y分别表示生产A、B两种产品的数量,在(2)的条件下,求x、y为何值时,z=xEξ+yEη最大?最大值是多少?(解答时须给出图示)
(1)试根据茎叶图所提供的数据,分别计算A、B两种产品为一等品的概率PA、PB;
(2)已知每件产品的利润如表一所示,用ξ、η分别表示一件A、B型产品的利润,在(1)的条件下,求ξ、η的分布列及数学期望(均值)Eξ、Eη;
(3)已知生产一件产品所需用的配件数和成本资金如表二所示,该厂有配件30件,可用资金40万元,设x、y分别表示生产A、B两种产品的数量,在(2)的条件下,求x、y为何值时,z=xEξ+yEη最大?最大值是多少?(解答时须给出图示)
| 等级 利润 产品 | 一等品 | 二等品 |
| A型 | 4(万元) | 3(万元) |
| B型 | 3(万元) | 2(万元) |
| 表二 |
| 表二 |
| 项目 用量 产品 | 配件(件) | 资金(万元) |
| A型 | 6 | 4 |
| B型 | 2 | 8 |