题目内容
已知
=(
sinx,cosx),
=(cosx,cosx),x∈R函数f(x)=2
•
-1;
(I)f(x)的最小正周期;
(Ⅱ)求f(x)在区间[-
,
]的最大值和最小值.
| a |
| 3 |
| b |
| a |
| b |
(I)f(x)的最小正周期;
(Ⅱ)求f(x)在区间[-
| π |
| 6 |
| π |
| 4 |
(I)f(x)=2
sinxcosx+cos2x-1
=
sin2x+cos2x=2sin(2x+
),
∴T=
=π.
(II)∵-
≤x≤
,∴-
≤2x+
≤
,
∴当2x+
=
时,即x=
,函数f(x)取得最大值2.
当2x+
=-
时,函数f(x)取得最小值-1.
| 3 |
=
| 3 |
| π |
| 6 |
∴T=
| 2π |
| 2 |
(II)∵-
| π |
| 6 |
| π |
| 4 |
| π |
| 6 |
| π |
| 6 |
| 2π |
| 3 |
∴当2x+
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
当2x+
| π |
| 6 |
| π |
| 6 |
练习册系列答案
相关题目