题目内容

9.f(x)=x2-(a+1)x+a,g(x)=-(a+4)x-4+a,(a∈R).
(1)比较f(x)与g(x)的大小;
(2)解关于x的不等式:f(x)>0.

分析 (1)2个函数作差可得:f(x)-g(x)=(x+$\frac{3}{2}$)2+$\frac{7}{4}$>0,即可得解f(x)>g(x).
(2)由f(x)>0得(x-a)(x-1)>0,利用一元二次不等式的解法分类讨论即可得解.

解答 解:(1)∵$f(x)-g(x)={x^2}-(a+1)x+a+(a+4)x+4+a={x^2}+3x+4={(x+\frac{3}{2})^2}+\frac{7}{4}>0$,
∴f(x)>g(x).
(2)由f(x)>0得(x-a)(x-1)>0,
①当a<1时,解集为{x|x<a或x>1},
②当a=1时,解集为{x|x≠1},
③当a>1时,解集为{x|x<1或x>a}.

点评 一元二次不等式的核心还是求一元二次方程的根,然后在结合图象判定其区间.要求能熟练掌握,争取基础分不要丢,本题属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网