题目内容
【题目】在平面直角坐标系中
,以原点
为极点,以
轴正半轴为极轴,建立极坐标系,直线
的极坐标方程为
,曲线
的参数方程为:
(
为参数),
,
为直线
上距离为
的两动点,点
为曲线
上的动点且不在直线
上.
(1)求曲线
的普通方程及直线
的直角坐标方程.
(2)求
面积的最大值.
【答案】(1)直线
的直角坐标方程为
,曲线
的普通方程为
(2)![]()
【解析】
(1)直线
的极坐标方程
利用两角差的余弦公式展开,再利用公式
,将方程化成普通方程形式;对曲线
的参数
进行消参,从而得到普通方程;
(2)设点![]()
,将点到直线的距离转化为三角函数的值域问题.
(1)直线
的极坐标方程
化成
,
![]()
,
直线
的直角坐标方程为
,
曲线
的参数方程化成:
.
平方相加得
,即![]()
(2)设点![]()
,则
到直线
的距离为:
![]()
,
当
时,
,
设
的面积为
,则![]()
.
【题目】某城市有东、西、南、北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵,交警部门记录了11月份30天内的拥堵情况(如下表所示,其中●表示拥堵,○表示通畅).假设每个人口是否发生拥堵相互独立,将各入口在这30天内拥堵的频率代替各入口每天拥堵的概率.
11.1 | 11.2 | 11.3 | 11.4 | 11.5 | 11.6 | 11.7 | 11.8 | 11.9 | 11.10 | 11.11 | 11.12 | 11.13 | 11.14 | 11.15 | ||||||||||||||||
东入口 | ● | ○ | ○ | ○ | ○ | ● | ○ | ● | ● | ○ | ● | ● | ● | ○ | ● | |||||||||||||||
西入口 | ○ | ○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ● | ○ | ○ | |||||||||||||||
南入口 | ○ | ● | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ● | |||||||||||||||
北入口 | ● | ○ | ○ | ○ | ● | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ● | ○ | |||||||||||||||
11.16 | 11.17 | 11.18 | 11.19 | 11.20 | 11.21 | 11.22 | 11.23 | 11.24 | 11.25 | 11.26 | 11.27 | 11.28 | 11.29 | 11.30 | ||||||||||||||||
东入口 | ● | ○ | ○ | ● | ○ | ○ | p>○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | |||||||||||||||
西入口 | ● | ○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ○ | |||||||||||||||
南入口 | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ● | |||||||||||||||
北入口 | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ● | ○ | |||||||||||||||
(1)分别求该城市一天中早高峰时间段这四个主干道的入口发生拥堵的概率.
(2)各人口一旦出现拥堵就需要交通协管员来疏通,聘请交通协管员有以下两种方案可供选择.方案一:四个主干道入口在早高峰时间段每天各聘请一位交通协管员,聘请每位交通协管员的日费用为
(
,且
)元.方案二:在早高峰时间段若某主干道入口发生拥堵,交警部门则需临时调派两位交通协管员协助疏通交通,调派后当日需给每位交通协管员的费用为200元.以四个主干道入口聘请交通协管员的日总费用的数学期望为依据,你认为在这两个方案中应该如何选择?请说明理由.
【题目】某纪念章从某年某月某日起开始上市,通过市场调査,得到该纪念章每
枚的市场价
(单位:元)与上市时间
(单位:天)的数据如下:
上市时间 |
|
|
|
市场价 |
|
|
|
(1)根据上表数计,从下列函数中选取一个恰当的函数描述该纪念章的市场价
与上市时间
的变化关系并说明理由:①
;②
;③
;④
;
(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格.