ÌâÄ¿ÄÚÈÝ

1£®°´ÕÕÈçÏµĹæÂɹ¹ÔìÊý±í£º
µÚÒ»ÐÐÊÇ£º2£»
µÚ¶þÐÐÊÇ£º2+1£¬2+3£º¼´3£¬5£»
µÚÈýÐÐÊÇ£º3+1£¬3+3£¬5+1£¬5+3£¬¼´£º4£¬6£¬6£¬8£¬
¡­
£¨¼´´ÓµÚ¶þÐÐÆð½«ÉÏÒ»ÐеÄÊýµÄÿһÏî¸÷¼Ó1д³ö£¬ÔÙ¸÷ÏîÔÙ¼Ó3д³ö£©£¬ÈôµÚnÐÐËùÓеÄÏîµÄºÍΪan£»
2
3 5
4 6 6 8
5 7 7 9 7 9 9 11
¡­
£¨1£©Çóa3£¬a4£¬a5£»
£¨2£©ÊÔд³öan+1ÓëanµÄµÝÍÆ¹ØÏµ£¬²¢¾Ý´ËÇó³öÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÉèSn=$\frac{{a}_{3}}{{a}_{1}{a}_{2}}$+$\frac{{a}_{4}}{{a}_{2}{a}_{3}}$+¡­+$\frac{{a}_{n+2}}{{a}_{n}{a}_{n+1}}$£¨n¡ÊN*£©£¬ÇóSnºÍ$\underset{lim}{n¡ú¡Þ}$SnµÄÖµ£®

·ÖÎö £¨1£©Ö±½Ó´úÈë¼ÆËã¼´¿É£»
£¨2£©Í¨¹ý¹Û²ì¿ÉÖªan+1=2an+£¨1+3£©•2n-1£¬½ø¶øÁ½±ßͬʱ³ýÒÔ2n+1£¬ÕûÀí¿ÉµÃÊýÁÐ{$\frac{{a}_{n}}{{2}^{n}}$}ÊÇÊ×Ïî¡¢¹«²î¾ùΪ1µÄµÈ²îÊýÁУ¬¼ÆËã¼´µÃ½áÂÛ£»
£¨3£©Í¨¹ý£¨2£©ÁÑÏî¿ÉÖª$\frac{{a}_{n+2}}{{a}_{n}{a}_{n+1}}$=4[$\frac{1}{n•{2}^{n}}$-$\frac{1}{£¨n+1£©•{2}^{n+1}}$]£¬½ø¶ø²¢ÏîÏà¼Ó¼´µÃ½áÂÛ£®

½â´ð ½â£º£¨1£©ÒÀÌâÒ⣬a3=4+6+6+8=24£¬
a4=5+7+7+9+7+9+9+11=64£¬
a5=6+8+8+10+8+10+10+12+8+10+10+12+10+12+12+14=160£»
£¨2£©¡ß´ÓµÚ¶þÐÐÆð½«ÉÏÒ»ÐеÄÊýµÄÿһÏî¸÷¼Ó1д³ö£¬ÔÙ¸÷ÏîÔÙ¼Ó3д³ö£¬
¡àan+1=2an+£¨1+3£©•2n-1£¬¼´an+1=2an+2n+1£¬
Á½±ßͬʱ³ýÒÔ2n+1£¬µÃ£º$\frac{{a}_{n+1}}{{2}^{n+1}}$=$\frac{{a}_{n}}{{2}^{n}}$+1£¬
ÓÖ¡ß$\frac{{a}_{1}}{{2}^{1}}$=1£¬
¡à$\frac{{a}_{n}}{{2}^{n}}$=n£¬¼´an=n•2n£»
£¨3£©ÓÉ£¨2£©¿ÉÖª$\frac{{a}_{n+2}}{{a}_{n}{a}_{n+1}}$=$\frac{£¨n+2£©•{2}^{n+2}}{n£¨n+1£©•{2}^{n}•{2}^{n+1}}$=4[$\frac{1}{n•{2}^{n}}$-$\frac{1}{£¨n+1£©•{2}^{n+1}}$]£¬
¡àSn=$\frac{{a}_{3}}{{a}_{1}{a}_{2}}$+$\frac{{a}_{4}}{{a}_{2}{a}_{3}}$+¡­+$\frac{{a}_{n+2}}{{a}_{n}{a}_{n+1}}$
=4[$\frac{1}{1•{2}^{1}}$-$\frac{1}{2•{2}^{2}}$+$\frac{1}{2•{2}^{2}}$-$\frac{1}{3•{2}^{3}}$+¡­+$\frac{1}{n•{2}^{n}}$-$\frac{1}{£¨n+1£©•{2}^{n+1}}$]
=4[$\frac{1}{1•{2}^{1}}$-$\frac{1}{£¨n+1£©•{2}^{n+1}}$]
=2-$\frac{1}{£¨n+1£©•{2}^{n-1}}$£¨n¡ÊN*£©£¬
¡à$\underset{lim}{n¡ú¡Þ}$Sn=$\underset{lim}{n¡ú¡Þ}$[2-$\frac{1}{£¨n+1£©•{2}^{n-1}}$]=2£®

µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏǰnÏîºÍ£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬¿¼²éÁÑÏîÏàÏû·¨£¬¶Ô±í´ïʽµÄÁé»î±äÐÎÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø