题目内容
设等差数列{an}的公差和等比数列{bn}的公比都是d,且a1=b1,a2=b2,a4=b4.
(Ⅰ)求an,bn;
(Ⅱ)设Sn是数列{an•bn}的前n项和,求Sn.
(Ⅰ)求an,bn;
(Ⅱ)设Sn是数列{an•bn}的前n项和,求Sn.
分析:(1)利用等差数列和等比数列的通项公式即可得出;
(2)利用“错位相减法”即可得出.
(2)利用“错位相减法”即可得出.
解答:解:(1)∵等差数列{an}的公差和等比数列{bn}的公比都是d,且a1=b1,a2=b2,a4=b4.
∴
解得d=-2,d=1(舍去).
当d=-2时,a1=
.
∴an=
-2n,bn=
•(-2)n-1=-
.
(2)由(1)可得:anbn=
(2n-
).
Sn=(2-
)•
+(2•2-
)•
+…+(2n-
)•
,①
-2Sn=(2-
)•
+(2•2-
)•
+…+(2n-
)•
,②
①-②得3Sn=
+2[
+
+…+
]-(2n-
)•
=
+(n-1)
.
∴Sn=
+
.
∴
|
解得d=-2,d=1(舍去).
当d=-2时,a1=
| 2 |
| 3 |
∴an=
| 8 |
| 3 |
| 2 |
| 3 |
| (-2)n |
| 3 |
(2)由(1)可得:anbn=
| (-2)n |
| 3 |
| 8 |
| 3 |
Sn=(2-
| 8 |
| 3 |
| -2 |
| 3 |
| 8 |
| 3 |
| (-2)2 |
| 3 |
| 8 |
| 3 |
| (-2)n |
| 3 |
-2Sn=(2-
| 8 |
| 3 |
| (-2)2 |
| 3 |
| 8 |
| 3 |
| (-2)3 |
| 3 |
| 8 |
| 3 |
| (-2)n+1 |
| 3 |
①-②得3Sn=
| 4 |
| 9 |
| (-2)2 |
| 3 |
| (-2)3 |
| 3 |
| (-2)n |
| 3 |
| 8 |
| 3 |
| (-2)n+1 |
| 3 |
| 4 |
| 3 |
| (-2)n+2 |
| 3 |
∴Sn=
| 4 |
| 9 |
| (n-1)(-2)n+2 |
| 9 |
点评:本题考查了等差数列和等比数列的通项公式即前n项和公式、“错位相减法”,属于中档题.
练习册系列答案
相关题目