题目内容

如图所示,正方体ABCD-A1B1C1D1中,A1C与截面DBC1交于O点,AC,BD交于M点,求证:C1,O,M三点共线.
分析:欲证C1,O,M三点共线,只须证它们都在平面A1ACC1与平面DBC1的交线上,根据立体几何中的公理可知,只要说明C1,O,M三点是平面A1ACC1与平面DBC1的公共点即可.
解答:证明:如图,因为C1∈平面A1ACC1,且C1∈平面DBC1
∴C1是平面A1ACC1与平面DBC1的公共点,又因为M∈AC,所以M∈平面A1ACC1
∵M∈BD,∴M∈平面DBC1,∴M也是平面A1ACC1与平面DBC1的公共点,
∴C1M是平面A1ACC1与平面DBC1交线,
∵O是A1C与平面DBC1的交点,∴O∈平面A1ACC1,O∈平面DBC1
∴O也是平面A1ACC1与平面DBC1的公共点,
∴O∈直线1CM,即C1,O,M三点共线.
点评:本题主要考查了平面的基本性质及推论,做题时目标明确,知道要证什么就需证什么,掌握基本方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网