题目内容
(2013•广元二模)设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10.
①求证:数列{lgan}是等差数列;
②设bn=
求数列{bn}的前n项和Tn.
①求证:数列{lgan}是等差数列;
②设bn=
| 3 | (lgan)(lgan+1) |
分析:①利用an与Sn的关系即可得到an,从而lgan+1-lgan=lg
=1,即可得到数列{lgan}是以lga1=lg10=1为首项,1为公差的等差数列;
②由①可得:lgan=lg10n=n,lgan+1=n+1,bn=
=3(
-
),利用裂项求和即可得到Tn.
| an+1 |
| an |
②由①可得:lgan=lg10n=n,lgan+1=n+1,bn=
| 3 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:①当n=1时,a2=9S1+10=9×10+10=100;
当n≥2时,由an+1=9Sn+10,an=9Sn-1+10,
可得an+1-an=9an,即an+1=10an,此式对于n=1时也成立.
∴数列{an}是以10为首项,10为公比的等比数列,
∴an=10×10n-1=10n.
∴lgan+1-lgan=lg
=1,
∴数列{lgan}是以lga1=lg10=1,为首项,1为公差的等差数列;
②由①可得:lgan=lg10n=n,lgan+1=n+1,
∴bn=
=3(
-
),
∴Tn=3[(1-
)+(
-
)+…+(
-
)]=3(1-
)=
.
当n≥2时,由an+1=9Sn+10,an=9Sn-1+10,
可得an+1-an=9an,即an+1=10an,此式对于n=1时也成立.
∴数列{an}是以10为首项,10为公比的等比数列,
∴an=10×10n-1=10n.
∴lgan+1-lgan=lg
| an+1 |
| an |
∴数列{lgan}是以lga1=lg10=1,为首项,1为公差的等差数列;
②由①可得:lgan=lg10n=n,lgan+1=n+1,
∴bn=
| 3 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=3[(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 3n |
| n+1 |
点评:熟练掌握an与Sn的关系、等差数列与等比数列的定义及其通项公式、裂项求和等是解题的关键.
练习册系列答案
相关题目