搜索
题目内容
x
,
y
∈R时,函数
f
(
x
,
y
) = (
x
+
y
)
2
+ (
y
)
2
的最小值是__________。
试题答案
相关练习册答案
2
练习册系列答案
Happy寒假作业快乐寒假系列答案
金象教育U计划学期系统复习寒假作业系列答案
八斗才火线计划寒假西安交通大学出版社系列答案
伴你成长橙色寒假系列答案
帮你学寒假作业系列答案
备战中考寒假系列答案
创新大课堂系列丛书寒假作业系列答案
创新自主学习寒假新天地系列答案
创优教学寒假作业年度总复习系列答案
导学练寒假作业云南教育出版社系列答案
相关题目
已知函数f(x),当x,y∈R时恒有f(x+y)=f(x)+f(y).
(1)求证:f(x)是奇函数;
(2)若f(-3)=a,试用a表示f(24);
(3)若x>0时f(x)<0且f(1)=-
1
2
,试求f(x)在区间[-2,6]上的最大值与最小值.
函数f(x)定义域为R,x、y∈R时恒有f(xy)=f(x)+f(y),若f(
7
+
2
)+f(
7
-
2
)=2,则f(
1
26
+1
)+f(
1
26
-1
)=
-4
-4
.
已知函数f(x),当x,y∈R时恒有f(x+y)=f(x)+f(y).
(1)求f(0),并判断f(x)的奇偶性;
(2)如果x>0时,有f(x)<0,试判断f(x)在R上的单调性,并给出证明;
(3)在(2)的条件下,若
f(1)=-
1
2
,试求f(x)在区间[-2,6]上的最大值和最小值.
已知函数f(x),当x,y∈R时恒有f(x+y)=f(x)+f(y).
(1)求f(0),并判断f(x)的奇偶性;
(2)如果x>0时,有f(x)<0,试判断f(x)在R上的单调性,并给出证明;
(3)在(2)的条件下,若
,试求f(x)在区间[-2,6]上的最大值和最小值.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案