题目内容

已知向量数学公式=(3,-4),数学公式=(6,-3),数学公式=(5-m,-3-m).
(1)若点A、B、C(2)共线,求实数m(3)的值;
(2)若△ABC为直角三角形,且∠C=90°,求实数m的值.

解:(1)若点A、B、C 共线,则,λ 为非零实数,故 (3,1)=λ (2-m,1-m),
∴2λ-mλ=3,λ-mλ=1,解得 λ=2,m=
(2)∵△ABC为直角三角形,且∠C=90°,∴=(m-2,m-1)•(m+1,m)=0,
∴m=1±
分析:(1)若点A、B、C 共线,则,λ 为非零实数,故有 (3,1)=λ (2-m,1-m),解方程求得实数m的值.
(2)根据 =(m-2,m-1)•(m+1,m)=0,解方程求得实数m的值.
点评:本题考查证明三点共线的性质,两个向量共线的性质,两个向量坐标形式的运算,是一道基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网