题目内容
已知n是正整数,数列{an}的前n项和为Sn,数列{nan}的前n项和为Tn.对任何正整数n,等式Sn=-an+
(n-3)都成立.
(I)求数列{an}的通项公式;
(II)求Tn;
(III)设An=2Tn,Bn=(2n+4)Sn+3,比较An与Bn的大小.
| 1 |
| 2 |
(I)求数列{an}的通项公式;
(II)求Tn;
(III)设An=2Tn,Bn=(2n+4)Sn+3,比较An与Bn的大小.
(I) 当n=1时,由sn=-an+
(n-3)的S1=a1=-a1+
(1-3),
解得a1= -
…2分
当n≥2时,an=Sn-Sn-1=-an+
(n-3)-[-an-1+
(n-4)]
解得 an=
an-1+
,即an-
=
(an-1-
)
因此,数列{an-
}是首项为-1,公比为
的等比数列
∴an-
=(-1)•(
)n-1,
即an=
-
,…7分
∴数列{an}的通项公式为an=
-
.
(II)∵nan=
-n•
,
∴Tn=
(1+2+3+…+n)-(1+2×
+3×
+…+n×
)…6分
令Un= 1+2×
+3×
+…+n×
.
则
Un=
+2×
+3×
+…+n×
.
上面两式相减:
Un= 1+
+
+…+
-n×
=
-n•
,即Un=4-
.
∴Tn =
-4+
=
+
…8分
(III)∵Sn=-an+
=-
+
+
=
+
,
∴An-Bn=
+
-
-
-3
=
…10分
∵当n=2或n=3时,
的值最大,最大值为0,
∴An-Bn≤0.
因此,当n是正整数时,An≤Bn.…12分
| 1 |
| 2 |
| 1 |
| 2 |
解得a1= -
| 1 |
| 2 |
当n≥2时,an=Sn-Sn-1=-an+
| 1 |
| 2 |
| 1 |
| 2 |
解得 an=
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
因此,数列{an-
| 1 |
| 2 |
| 1 |
| 2 |
∴an-
| 1 |
| 2 |
| 1 |
| 2 |
即an=
| 1 |
| 2 |
| 1 |
| 2n-1 |
∴数列{an}的通项公式为an=
| 1 |
| 2 |
| 1 |
| 2n-1 |
(II)∵nan=
| n |
| 2 |
| 1 |
| 2n-1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
令Un= 1+2×
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
则
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
上面两式相减:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
1-(
| ||
1-
|
| 1 |
| 2n |
| n+2 |
| 2n-1 |
∴Tn =
| n(n+1) |
| 4 |
| n+2 |
| 2n-1 |
| n2+n-16 |
| 4 |
| n+2 |
| 2n-1 |
(III)∵Sn=-an+
| n-3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| n-3 |
| 2 |
| n-4 |
| 2 |
| 1 |
| 2n-1 |
∴An-Bn=
| n2+n-16 |
| 2 |
| n+2 |
| 2n-2 |
| (2n+4)(n-4) |
| 2 |
| n+2 |
| 2n-2 |
=
| -n2+5n-6 |
| 2 |
∵当n=2或n=3时,
| -n2+5n-6 |
| 2 |
∴An-Bn≤0.
因此,当n是正整数时,An≤Bn.…12分
练习册系列答案
相关题目