题目内容

数列{an}前n项和记为Sn,且an>0,Sn=
1
8
(an+2)2(n∈N*)

(1)求数列{an}通项公式an
(2)若bn满足bn=(t-1)
an+2
4
(t>1)
,Tn为数列{bn}前n项和,求:Tn
(3)在(2)的条件下求
lim
n→∞
Tn
Tn+1
分析:(1)利用已知表达式,写出n-1时的表达式,通过作差,利用数列是正数数列,判断数列{an}是等差数列,然后求出通项公式an
(2)利用(1)化简bn=(t-1)
an+2
4
(t>1)
,判断数列是等比数列,然后求解数列{bn}前n项和Tn
(3)在(2)的条件下求
lim
n→∞
Tn
Tn+1
.通过t的范围讨论,利用数列极限 运算法则求解即可.
解答:解:(1)Sn=
1
8
(an+2)2
可得Sn-1=
1
8
(an-1+2)2
,n≥2.
两式作差可得:8an=an2+4an-an-12-4an-1
即:(an-an-1-4)(an+an-1)=0,
∵数列{an}中,an>0,
∴an-an-1-4=0,
∴{an}是等差数列.又a1=S1=
1
8
(a1+2)2

解得a1=2.
∴an=2+(n-1)×4=4n-2.
数列{an}通项公式an=4n-2.
(2)若bn满足bn=(t-1)
an+2
4
(t>1)

bn=(t-1)
4n-2+2
4
=(t-1)n
数列{bn}是首项为t-1,公比为t-1的等比数列,
Tn=
(t-1)[1-(t-1)n]
1-t+1
=
(t-1)[1-(t-1)n]
-t

(3)
Tn
Tn+1
=
(t-1)[1-(t-1)n]
-t
(t-1)[1-(t-1)n+1]
-t
=
1-(t-1)n
1-(t-1)n+1

lim
n→∞
Tn
Tn+1
=
lim
n→∞
1-(t-1)n
1-(t-1)n+1

当t∈(1,2]时,t-1∈(0,1],
lim
n→∞
Tn
Tn+1
=
lim
n→∞
1-(t-1)n
1-(t-1)n+1
=1.
当t∈(2,+∞)时,t-1∈(1,+∞),
lim
n→∞
Tn
Tn+1
=
lim
n→∞
1-(t-1)n
1-(t-1)n+1
=
lim
n→∞
1-(t-1)n
(t-1)n+1
1-(t-1)n+1
(t-1)n+1
=
1
t-1
点评:本题考查数列的递推关系式以及数列的判断,通项公式的求法,数列极限的求法,考查转化思想以及计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网