题目内容
数列{an}前n项和记为Sn,且an>0,Sn=
(an+2)2(n∈N*)
(1)求数列{an}通项公式an
(2)若bn满足bn=(t-1)
(t>1),Tn为数列{bn}前n项和,求:Tn
(3)在(2)的条件下求
.
| 1 |
| 8 |
(1)求数列{an}通项公式an
(2)若bn满足bn=(t-1)
| an+2 |
| 4 |
(3)在(2)的条件下求
| lim |
| n→∞ |
| Tn |
| Tn+1 |
分析:(1)利用已知表达式,写出n-1时的表达式,通过作差,利用数列是正数数列,判断数列{an}是等差数列,然后求出通项公式an
(2)利用(1)化简bn=(t-1)
(t>1),判断数列是等比数列,然后求解数列{bn}前n项和Tn
(3)在(2)的条件下求
.通过t的范围讨论,利用数列极限 运算法则求解即可.
(2)利用(1)化简bn=(t-1)
| an+2 |
| 4 |
(3)在(2)的条件下求
| lim |
| n→∞ |
| Tn |
| Tn+1 |
解答:解:(1)Sn=
(an+2)2可得Sn-1=
(an-1+2)2,n≥2.
两式作差可得:8an=an2+4an-an-12-4an-1,
即:(an-an-1-4)(an+an-1)=0,
∵数列{an}中,an>0,
∴an-an-1-4=0,
∴{an}是等差数列.又a1=S1=
(a1+2)2,
解得a1=2.
∴an=2+(n-1)×4=4n-2.
数列{an}通项公式an=4n-2.
(2)若bn满足bn=(t-1)
(t>1),
∴bn=(t-1)
=(t-1)n.
数列{bn}是首项为t-1,公比为t-1的等比数列,
Tn=
=
.
(3)
=
=
,
=
.
当t∈(1,2]时,t-1∈(0,1],
=
=1.
当t∈(2,+∞)时,t-1∈(1,+∞),
=
=
=
.
| 1 |
| 8 |
| 1 |
| 8 |
两式作差可得:8an=an2+4an-an-12-4an-1,
即:(an-an-1-4)(an+an-1)=0,
∵数列{an}中,an>0,
∴an-an-1-4=0,
∴{an}是等差数列.又a1=S1=
| 1 |
| 8 |
解得a1=2.
∴an=2+(n-1)×4=4n-2.
数列{an}通项公式an=4n-2.
(2)若bn满足bn=(t-1)
| an+2 |
| 4 |
∴bn=(t-1)
| 4n-2+2 |
| 4 |
数列{bn}是首项为t-1,公比为t-1的等比数列,
Tn=
| (t-1)[1-(t-1)n] |
| 1-t+1 |
| (t-1)[1-(t-1)n] |
| -t |
(3)
| Tn |
| Tn+1 |
| ||
|
| 1-(t-1)n |
| 1-(t-1)n+1 |
| lim |
| n→∞ |
| Tn |
| Tn+1 |
| lim |
| n→∞ |
| 1-(t-1)n |
| 1-(t-1)n+1 |
当t∈(1,2]时,t-1∈(0,1],
| lim |
| n→∞ |
| Tn |
| Tn+1 |
| lim |
| n→∞ |
| 1-(t-1)n |
| 1-(t-1)n+1 |
当t∈(2,+∞)时,t-1∈(1,+∞),
| lim |
| n→∞ |
| Tn |
| Tn+1 |
| lim |
| n→∞ |
| 1-(t-1)n |
| 1-(t-1)n+1 |
| lim |
| n→∞ |
| ||
|
| 1 |
| t-1 |
点评:本题考查数列的递推关系式以及数列的判断,通项公式的求法,数列极限的求法,考查转化思想以及计算能力.
练习册系列答案
相关题目