搜索
题目内容
设
f(x)=
x+2(x≤-1)
x
2
(-1<x<2)
2x(x≥2)
,
(1)在下列直角坐标系中画出f(x)的图象;
(2)若f(t)=3,求t值.
试题答案
相关练习册答案
(1)如图
(2)由函数的图象可得:f(t)=3
即t
2
=3且-1<t<2.
∴t=
3
练习册系列答案
启智课堂系列答案
金牌课堂练系列答案
优等生全优计划系列答案
新课堂作业本系列答案
探究导学系列答案
三新快车金牌周周练系列答案
上海课课通优化精练系列答案
新课标学习方法指导丛书系列答案
新课程自主学习与测评系列答案
百分学生作业本全能集训系列答案
相关题目
设函数f(x)=a
2
x
2
(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)
2
>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设
a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
设
f(x)=
x+2(x≤-1)
x
2
(-1<x<2)
2x(x≥2)
,
(1)在下列直角坐标系中画出f(x)的图象;
(2)若f(t)=3,求t值.
设
h(x)=x+
m
x
,
x∈[
1
4
,5]
,其中m是不等于零的常数,
(1)(理)写出h(4x)的定义域;
(文)m=1时,直接写出h(x)的值域;
(2)(文、理)求h(x)的单调递增区间;
(3)已知函数f(x)(x∈[a,b]),定义:f
1
(x)=minf(t)|a≤t≤x(x∈[a,b]),f
2
(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函数f(x)在D上的最小值,maxf(x)|x∈D表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f
1
(x)=cosx,x∈[0,π],f
2
(x)=1,x∈[0,π].
(理)当m=1时,设
M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M
1
(x)-M
2
(x)≤n恒成立,求t,n的取值范围;
(文)当m=1时,|h
1
(x)-h
2
(x)|≤n恒成立,求n的取值范围.
(2013•黄埔区一模)对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”.设函数f(x)的定义域为R
+
,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2
10
);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k(2-x),求f(x)在区间[1,2
2n
)(n∈N
*
)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“P数对”,试比较下列各组中两个式子的大小,并说明理由. ①f(2
-n
)与2
-n
+2(n∈N
*
);②f(x)与2x+2(x∈(2
-n
,2
1-n
],n∈N
*
).
设函数f(x)=a
2
x
2
(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
2
,求a的值;
(2)关于x的不等式(x-1)
2
>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设
a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案