题目内容
5、设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是( )
分析:先根据抛物线的方程求得抛物线的准线方程,根据点P到y轴的距离求得点到准线的距离进而利用抛物线的定义可知点到准线的距离与点到焦点的距离相等,进而求得答案.
解答:解:抛物线y2=8x的准线为x=-2,
∵点P到y轴的距离是4,
∴到准线的距离是4+2=6,
根据抛物线的定义可知点P到该抛物线焦点的距离是6
故选B
∵点P到y轴的距离是4,
∴到准线的距离是4+2=6,
根据抛物线的定义可知点P到该抛物线焦点的距离是6
故选B
点评:本题主要考查了抛物线的定义.充分利用了抛物线上的点到准线的距离与点到焦点的距离相等这一特性.
练习册系列答案
相关题目