题目内容
已知曲线f(x)=xn+1(n∈N*)与直线x=1交于点P,若设曲线y=f(x)在点P处的切线与x轴交点的横坐标为xn,则log2012x1+log2012x2+…+log2012x2011的值为
-1
-1
.分析:由f′(x)=(n+1)xn,知k=f′(x)=n+1,故点P(1,1)处的切线方程为:y-1=(n+1)(x-1),令y=0,得xn=
,由此能求出log2012x1+log2012x2+…+log2012x2011的值
| n |
| n+1 |
解答:解:f′(x)=(n+1)xn,
k=f′(x)=n+1,
点P(1,1)处的切线方程为:y-1=(n+1)(x-1),
令y=0得,x=1-
=
,
即xn=
,
∴x1×x2×…×x2011=
×
×
×…×
×
=
,
则log2012x1+log2012x2+…+log2012x2011
=log2012(x1×x2×…×x2011)
=log2012
=-1.
故答案为-1
k=f′(x)=n+1,
点P(1,1)处的切线方程为:y-1=(n+1)(x-1),
令y=0得,x=1-
| 1 |
| n+1 |
| n |
| n+1 |
即xn=
| n |
| n+1 |
∴x1×x2×…×x2011=
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
| 4 |
| 2010 |
| 2011 |
| 2011 |
| 2012 |
| 1 |
| 2012 |
则log2012x1+log2012x2+…+log2012x2011
=log2012(x1×x2×…×x2011)
=log2012
| 1 |
| 2012 |
故答案为-1
点评:本题考查利用导数求曲线上某点的切线方程的求法,解题时要认真审题,仔细解答,注意导数性质的灵活运用.
练习册系列答案
相关题目