题目内容
已知椭圆中心在原点,焦点在x轴上,长轴长等于12,离心率为
.
(1)求椭圆的标准方程;
(2)过椭圆左顶点作直线l,若动点M到椭圆右焦点的距离比它到直线l的距离小4,求点M的轨迹方程.
| 1 | 3 |
(1)求椭圆的标准方程;
(2)过椭圆左顶点作直线l,若动点M到椭圆右焦点的距离比它到直线l的距离小4,求点M的轨迹方程.
分析:(1)利用长轴长等于12,离心率为
,求出椭圆的几何量,从而可求椭圆的标准方程;
(2)法一:利用求轨迹方程的一般方法求解;法二:利用抛物线的定义求解.
| 1 |
| 3 |
(2)法一:利用求轨迹方程的一般方法求解;法二:利用抛物线的定义求解.
解答:解:(1)设椭圆的半长轴长为a,半短轴长为b,半焦距为c.
由已知,2a=12,所以a=6.(2分)
又
=
,即a=3c,
所以3c=6,即c=2.(4分)
于是b2=a2-c2=36-4=32.
因为椭圆的焦点在x轴上,
所以椭圆的标准方程是
+
=1.(6分)
(2)法一:因为a=6,所以直线l的方程为x=-6,
又c=2,所以右焦点为F2(2,0)
过点M作直线l的垂线,垂足为H,由题设,|MF2|=|MH|-4.
设点M(x,y),则
=(x+6)-4=x+2.(8分)
两边平方,得(x-2)2+y2=(x+2)2,即y2=8x.(10分)
故点M的轨迹方程是y2=8x.(12分)
法二:因为a=6,c=2,所以a-c=4,从而椭圆左焦点F1到直线l的距离为4.(8分)
由题设,动点M到椭圆右焦点的距离与它到直线x=-2的距离相等,
所以点M的轨迹是以右焦点为F2(2,0)为焦点,直线x=-2为准线的抛物线.(10分)
显然抛物线的顶点在坐标原点,且p=|F1F2|=4,
故点M的轨迹方程是y2=8x.(12分)
由已知,2a=12,所以a=6.(2分)
又
| c |
| a |
| 1 |
| 3 |
所以3c=6,即c=2.(4分)
于是b2=a2-c2=36-4=32.
因为椭圆的焦点在x轴上,
所以椭圆的标准方程是
| x2 |
| 36 |
| y2 |
| 32 |
(2)法一:因为a=6,所以直线l的方程为x=-6,
又c=2,所以右焦点为F2(2,0)
过点M作直线l的垂线,垂足为H,由题设,|MF2|=|MH|-4.
设点M(x,y),则
| (x-2)2+y2 |
两边平方,得(x-2)2+y2=(x+2)2,即y2=8x.(10分)
故点M的轨迹方程是y2=8x.(12分)
法二:因为a=6,c=2,所以a-c=4,从而椭圆左焦点F1到直线l的距离为4.(8分)
由题设,动点M到椭圆右焦点的距离与它到直线x=-2的距离相等,
所以点M的轨迹是以右焦点为F2(2,0)为焦点,直线x=-2为准线的抛物线.(10分)
显然抛物线的顶点在坐标原点,且p=|F1F2|=4,
故点M的轨迹方程是y2=8x.(12分)
点评:本题考查椭圆、抛物线的标准方程,考查椭圆的几何性质,考查抛物线的定义,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目