题目内容
向量
=(1,2),
=(x,1),
=
+
,
=
-
,若
∥
,则实数x的值等于( )
| a |
| b |
| c |
| a |
| b |
| d |
| a |
| b |
| c |
| d |
分析:由向量
=(1,2),
=(x,1),知
=
+
=(1+x,3),
=
-
=(1-x,1),由
∥
,知1+x-3(1-x)=0,由此能求出x.
| a |
| b |
| c |
| a |
| b |
| d |
| a |
| b |
| c |
| d |
解答:解:∵向量
=(1,2),
=(x,1),
∴
=
+
=(1+x,3),
=
-
=(1-x,1),
∵
∥
,
∴1+x-3(1-x)=0,
解得x=
.
故选A.
| a |
| b |
∴
| c |
| a |
| b |
| d |
| a |
| b |
∵
| c |
| d |
∴1+x-3(1-x)=0,
解得x=
| 1 |
| 2 |
故选A.
点评:本题考查平面向量的坐标运算,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目
已知向量
=(1,2),
=(x,2),则向量
+2
与2
-
( )
| a |
| b |
| a |
| b |
| a |
| b |
| A、垂直的必要条件是x=-2 | ||
B、垂直的充要条件是x=
| ||
| C、平行的充分条件是x=-2 | ||
| D、平行的充要条件是x=1 |
向量
=(1,2),
=(x,1),
=
+2
,
=2
-
,且
∥
,则实数x的值等于( )
| a |
| b |
| c |
| a |
| b |
| d |
| a |
| b |
| c |
| d |
A、-
| ||
B、-
| ||
C、
| ||
D、
|