题目内容
已知公差不为0的等差数列{an}的首项a1(a1∈R),且
,
,
成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对n∈N*,试比较
+
+
+…+
与
的大小.
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a4 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对n∈N*,试比较
| 1 |
| a2 |
| 1 |
| a22 |
| 1 |
| a23 |
| 1 |
| a2n |
| 1 |
| a1 |
(Ⅰ)设等差数列{an}的公差为d,由题意可知(
)2=
×
,
即(a1+d)2=a1(a1+3d),从而a1d=d2,
因为d≠0,所以d=a1,
故an=nd=na1;
(Ⅱ)记Tn=
+
+…+
,由a2=2a1,
所以Tn=
=
=
,
从而,当a1>1时,Tn<
;当a1<1时,Tn>
.
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| a4 |
即(a1+d)2=a1(a1+3d),从而a1d=d2,
因为d≠0,所以d=a1,
故an=nd=na1;
(Ⅱ)记Tn=
| 1 |
| a2 |
| 1 |
| a22 |
| 1 |
| a2n |
所以Tn=
| ||||
1-
|
| ||||
1-
|
1-
| ||
| 2a1-1 |
从而,当a1>1时,Tn<
| 1 |
| a1 |
| 1 |
| a1 |
练习册系列答案
相关题目
已知公差不为0的等差数列{an}满足a1,a3,a4成等比关系,Sn为{an}的前n项和,则
的值为( )
| S3-S2 |
| S5-S3 |
| A、2 | ||
| B、3 | ||
C、
| ||
| D、不存在 |