题目内容
将函数的图象向左平移个单位,再向上平移1个单位,所得函数图象对应的解析式为( )
A. B.
C. D.
求值 .
高一某班共有学生人,据统计原来每人每年用于购买饮料的平均支出是元。若该班全体学生改饮某品牌的桶装纯净水,经测算和市场调查,其年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其它费用元,其中,纯净水的销售价(元桶)与年购买总量(桶)之间满足如图直线所示关系.
(1)求关于的函数关系式,并写出函数的定义域;
(2)若该班每年需要纯净水桶,请你根据提供的信息比较,该班全体学生改饮桶装纯净水的年总费用与该班全体学生购买饮料的年总费用,哪一个更少?说明你的理由.
已知椭圆的离心率为,点在上.
(1)求的方程;
(2)直线不经过原点,且不平行于坐标轴,与有两个交点,线段中点为,证明:直线的斜率与直线的斜率乘积为定值.
与直线垂直的直线的斜角为
下列有关命题的说法错误的是( )
A.若“”为假命题,则均为假命题
B.“”是“”的充分不必要条件
C.“”的必要不充分条件是“”
D.若命题,则命题
根据某水文观测点的历史统计数据,得到某河流水位(单位:米)的频率分布直方图如下:将河流水位在以上6段的频率作为相应段的概率,并假设每年河流水位互不影响.
(Ⅰ)求未来三年,至多有1年河流水位的概率(结果用分数表示);
(Ⅱ)该河流对沿河企业影响如下:当时,不会造成影响;当时,损失10000元;当时,损失60000元,为减少损失,现有三种应对方案:
方案一:防御35米的最高水位,需要工程费用3800元;
方案二:防御不超过31米的水位,需要工程费用2000元;
方案三:不采用措施:试比较哪种方案较好,并说明理由.
已知集合,则( )
A. B. C. D.
已知数列的首项为,且满足对任意的,都有,成立,则( )