题目内容
若tan(x+y)=
,tan(y-
)=
,则tan(x+
)的值是
.
| 3 |
| 5 |
| π |
| 3 |
| 1 |
| 3 |
| π |
| 3 |
| 2 |
| 9 |
| 2 |
| 9 |
分析:把已知的条件代入 tan(x+
)=tan[(x+y)-(y-
)]=
,运算求得结果.
| π |
| 3 |
| π |
| 3 |
tan(x+y)-tan(y-
| ||
1+tan(x+y)•tan(y-
|
解答:解:∵tan(x+y)=
,tan(y-
)=
,
∴tan(x+
)=tan[(x+y)-(y-
)]=
=
=
,
故答案为
.
| 3 |
| 5 |
| π |
| 3 |
| 1 |
| 3 |
∴tan(x+
| π |
| 3 |
| π |
| 3 |
tan(x+y)-tan(y-
| ||
1+tan(x+y)•tan(y-
|
| ||||
1+
|
| 2 |
| 9 |
故答案为
| 2 |
| 9 |
点评:本题主要考查两角差的正切公式的应用,属于基础题.
练习册系列答案
相关题目