题目内容
【题目】设函数![]()
(Ⅰ)当
时,解不等式
;
(Ⅱ)求证:![]()
【答案】(Ⅰ)
(Ⅱ)详见解析
【解析】
(Ⅰ)当a=1时,不等式f(x)≥1等价于|x+1|﹣|x﹣1|≥1,去绝对值,分段求出即可,
(Ⅱ)根据绝对值三角不等式可得f(x)
,只要证明
2即可.
(Ⅰ)当a=1时,不等式f(x)≥1等价于|x+1|﹣|x﹣1|≥1,
当x≤﹣1时,不等式化为﹣x﹣1+x﹣1≥1,原不等式无解,
当﹣1<x<1时,不等式化为x+1+x﹣1≥1,解得
x<1,
当x≥1时,不等式化为x+1﹣x+1≥1,解得x≥1,
综上所述,不等式的解集为[
,+∞);
(Ⅱ)f(x)=|x
|﹣|x
|≤|(x
)﹣(x
)|
,
∵a∈[0,2],
∴a+2﹣a≥2
,
∴2[a+(2﹣a)]≥(
)2,
∴(
)2≤4,
∴
2,
∴f(x)≤2.
练习册系列答案
相关题目