题目内容
已知A、B、C是△ABC的三个内角,向量
=(2,-2
),
=(cosB,sinB)且
⊥
.
(1)求角B;
(2)设向量
=(1+sin2x,cos2x),f(x)=
•
,求f(x)的最小正周期.
| m |
| 3 |
| n |
| m |
| n |
(1)求角B;
(2)设向量
| a |
| a |
| n |
分析:(1)利用数量积运算、两角和的正弦公式、正弦函数的单调性即可得出;
(2)利用数量积运算、两角和的正弦公式、周期公式即可得出.
(2)利用数量积运算、两角和的正弦公式、周期公式即可得出.
解答:解:(1)∵
⊥
,∴
•
=0,可得2cosB-2
sinB=0,
∴
sinB-
cosB=0,∴sin(B-
)=0,
∵0<B<π,∴-
<B-
<
,
∴B-
=0,解得B=
.
(2)f(x)=
•
=(1+sin2x)cos
+cos2xsin
=
+
sin2x+
cos2x
=sin(2x+
),
∴周期T=
=
=π.
| m |
| n |
| m |
| n |
| 3 |
∴
| ||
| 2 |
| 1 |
| 2 |
| π |
| 6 |
∵0<B<π,∴-
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
∴B-
| π |
| 6 |
| π |
| 6 |
(2)f(x)=
| a |
| n |
| π |
| 6 |
| π |
| 6 |
=
| ||
| 2 |
| ||
| 2 |
| 1 |
| 2 |
=sin(2x+
| π |
| 6 |
∴周期T=
| 2π |
| |ω| |
| 2π |
| 2 |
点评:熟练掌握三角函数的图象与性质、数量积运算、两角和的正弦公式等是解题的关键.
练习册系列答案
相关题目