题目内容
(2011•江西模拟)已知函数f(x)=aln(x+1)-x,数列{an}满足a1=
,ln(2an+1)=an+1•an+f(an+1•an)
(1)讨论f(x)的单调性;
(2)若a=1,证明:数列{
}是等差数列;
(3)在(2)的条件下,证明:a1+a2+…+an<n+ln
.
| 1 |
| 2 |
(1)讨论f(x)的单调性;
(2)若a=1,证明:数列{
| 1 |
| an-1 |
(3)在(2)的条件下,证明:a1+a2+…+an<n+ln
| 2 |
| n+2 |
分析:(1)f'(x)=-
,当a≤0时,f'(x)<0,则f(x)在(-1,+∞)递减;当a>0时,x∈(-1,a-1),f'(x)>0;x∈(a-1,+∞),f'(x)<0.由此能f(x)的单调性.
(2)由an+1=
,知an+1-1=
-1,所以
=
-1,由此能证明数列{
}是等差数列.
(3)当a=1时,f(x)在(-1,0)递增,在(0,+∞)递减,所以ln(x+1)≤x,故ln(
+1)<
,即:ln
<
,由此能够证明a1+a2+…an=n-(
+
+…+
)<n-(ln
+ln
+…+ln
)=n+ln
.
| x-(a-1) |
| x+1 |
(2)由an+1=
| 1 |
| 2-an |
| 1 |
| 2-an |
| 1 |
| an+1-1 |
| 1 |
| an-1 |
| 1 |
| an-1 |
(3)当a=1时,f(x)在(-1,0)递增,在(0,+∞)递减,所以ln(x+1)≤x,故ln(
| 1 |
| n+1 |
| 1 |
| n+1 |
| n+2 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n+1 |
| 3 |
| 2 |
| 4 |
| 3 |
| n+2 |
| n+1 |
| 2 |
| n+2 |
解答:解:(1)f'(x)=-
当a≤0时,f'(x)<0,
则f(x)在(-1,+∞)递减;
当a>0时,x∈(-1,a-1),f'(x)>0;
x∈(a-1,+∞),f'(x)<0;
∴当a>0时,在(-1,a-1)上f(x)递增,
在(a-1,+∞)上f(x)递减…..(4分)
(2)∵函数f(x)=aln(x+1)-x,数列{an}满足a1=
,
ln(2an+1)=an+1•an+f(an+1•an),a=1,
∴ln(2an+1)=an+1•an+ln(an+1•an+1)-an+1•an,
∴ln(2an+1)=ln(an+1•an+1),
∴2an+1=an+1•an+1,
∴an+1=
,
∴an+1-1=
-1,
∴
=
-1,
∴{
}是等差数列…..(8分)
(3)当a=1时,f(x)在(-1,0)递增,
在(0,+∞)递减,
∴f(x)≤f(0)=0,
即:ln(x+1)≤x,
∴ln(
+1)<
,即:ln
<
≤
,
由(2)得:an=1-
,
∴a1+a2+…an
=1-
+1-
+…+1-
=n-(
+
+…+
)<n-(ln
+ln
+…+ln
)=n+ln
<n-[ln(
+1)+ln(
+1)+…+ln(
+1)]
=n-[ln(
×
×…×
)]
=n-ln
=n+ln
.…(13分)
| x-(a-1) |
| x+1 |
当a≤0时,f'(x)<0,
则f(x)在(-1,+∞)递减;
当a>0时,x∈(-1,a-1),f'(x)>0;
x∈(a-1,+∞),f'(x)<0;
∴当a>0时,在(-1,a-1)上f(x)递增,
在(a-1,+∞)上f(x)递减…..(4分)
(2)∵函数f(x)=aln(x+1)-x,数列{an}满足a1=
| 1 |
| 2 |
ln(2an+1)=an+1•an+f(an+1•an),a=1,
∴ln(2an+1)=an+1•an+ln(an+1•an+1)-an+1•an,
∴ln(2an+1)=ln(an+1•an+1),
∴2an+1=an+1•an+1,
∴an+1=
| 1 |
| 2-an |
∴an+1-1=
| 1 |
| 2-an |
∴
| 1 |
| an+1-1 |
| 1 |
| an-1 |
∴{
| 1 |
| an-1 |
(3)当a=1时,f(x)在(-1,0)递增,
在(0,+∞)递减,
∴f(x)≤f(0)=0,
即:ln(x+1)≤x,
∴ln(
| 1 |
| n+1 |
| 1 |
| n+1 |
| n+2 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| n+1 |
由(2)得:an=1-
| 1 |
| n+1 |
∴a1+a2+…an
=1-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n+1 |
=n-(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n+1 |
| 3 |
| 2 |
| 4 |
| 3 |
| n+2 |
| n+1 |
| 2 |
| n+2 |
<n-[ln(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n+1 |
=n-[ln(
| 3 |
| 2 |
| 4 |
| 3 |
| n+2 |
| n+1 |
=n-ln
| n+2 |
| 2 |
=n+ln
| 2 |
| n+2 |
点评:本题考查数列与不等式的综合,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目