题目内容
已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若
=(cos
,-sin
),
=(cos
,sin
),且
•
=
(1)求角A的值;
(2)若a=2
,b+c=4,求△ABC的面积.
| m |
| A |
| 2 |
| A |
| 2 |
| n |
| A |
| 2 |
| A |
| 2 |
| m |
| n |
| 1 |
| 2 |
(1)求角A的值;
(2)若a=2
| 3 |
(1)由
•
=
,得cos2
-sin2
=
,
即cosA=
∵A为△ABC的内角,
∴A=
(2)由余弦定理:a2=b2+c2-2bccosA?a2=(b+c)2-3bc
即12=42-3bc?bc=
,
∴S△ABC=
bcsinA=
•
•
=
.
| m |
| n |
| 1 |
| 2 |
| A |
| 2 |
| A |
| 2 |
| 1 |
| 2 |
即cosA=
| 1 |
| 2 |
∵A为△ABC的内角,
∴A=
| π |
| 3 |
(2)由余弦定理:a2=b2+c2-2bccosA?a2=(b+c)2-3bc
即12=42-3bc?bc=
| 4 |
| 3 |
∴S△ABC=
| 1 |
| 2 |
| 1 |
| 2 |
| 4 |
| 3 |
| ||
| 2 |
| ||
| 3 |
练习册系列答案
相关题目