题目内容
.设f(x)=x2-4x-4,x∈[t,t+1](t∈R),求函数f(x)的最小值的解析式,并作出此解析式的图象.
f(x)=x2-4x-4=(x-2)2-8,即抛物线开口向上,对称轴为x=2,最小值为-8,过点(0,-4),
结合二次函数的图象可知:
当t+1<2,即t<1时,f(x)=x2-4x-4,x∈[t,t+1](t∈R)在x=t+1处取最小值f(t+1)=t2-2t-7,
当
,即1≤t≤2时,f(x)=x2-4x-4,x∈[t,t+1](t∈R)在x=2处取最小值-8,
当t>2时,f(x)=x2-4x-4,x∈[t,t+1](t∈R)在x=t处取最小值f(t)=t2-4t-4,
即最小值为g(t),由以上分析可得,g(t)=
,作图象如下;

结合二次函数的图象可知:
当t+1<2,即t<1时,f(x)=x2-4x-4,x∈[t,t+1](t∈R)在x=t+1处取最小值f(t+1)=t2-2t-7,
当
|
当t>2时,f(x)=x2-4x-4,x∈[t,t+1](t∈R)在x=t处取最小值f(t)=t2-4t-4,
即最小值为g(t),由以上分析可得,g(t)=
|
练习册系列答案
相关题目
设f(x)=
,函数图象与x轴围成封闭区域的面积为( )
|
A、
| ||
B、
| ||
C、
| ||
D、
|