题目内容
| lim |
| n→∞ |
| 1 |
| n2 |
| 3 |
| 2 |
| n+1 |
| 2 |
根据等差数列求和公式,得
1+
+2+…+
=
•n•(1+
)=
∴
(1+
+2+…+
)=
(
•
)=
=
故答案为:
1+
| 3 |
| 2 |
| n+1 |
| 2 |
| 1 |
| 2 |
| n+1 |
| 2 |
| n(n+3) |
| 4 |
∴
| lim |
| n→∞ |
| 1 |
| n2 |
| 3 |
| 2 |
| n+1 |
| 2 |
| lim |
| n→∞ |
| 1 |
| n2 |
| n2+3n |
| 4 |
| lim |
| n→∞ |
| n+3 |
| 4n |
| 1 |
| 4 |
故答案为:
| 1 |
| 4 |
练习册系列答案
相关题目