题目内容
若点P是棱长为1的正方体ABCD-A1B1C1D1中异于A的一个顶点,则
的所有可能值的个数是
- A.1
- B.2
- C.3
- D.4
B
分析:根据立方体的八个顶点分成两类:一类是:当P点是A1,D,D1中的一个时;另一类是:当P点是B,C,C1,B1中的一个时,分别根据向量数量积的几何意义得:
=1,从而得出
的所有可能值的个数.
解答:
解:分成两类:
一类是:当P点是A1,D,D1中的一个时,此时
,
∴
;
另一类是:当P点是B,C,C1,B1中的一个时,此时
方向上的投影是AB,
根据向量数量积的几何意义得:
=1;
则
的所有可能值的个数是0或1.
故选B.
点评:此题主要考查了向量在几何中的应用以及立体图形的性质,得出立方体的八个顶点分成二类是解决问题的关键.
分析:根据立方体的八个顶点分成两类:一类是:当P点是A1,D,D1中的一个时;另一类是:当P点是B,C,C1,B1中的一个时,分别根据向量数量积的几何意义得:
解答:
一类是:当P点是A1,D,D1中的一个时,此时
∴
另一类是:当P点是B,C,C1,B1中的一个时,此时
根据向量数量积的几何意义得:
则
故选B.
点评:此题主要考查了向量在几何中的应用以及立体图形的性质,得出立方体的八个顶点分成二类是解决问题的关键.
练习册系列答案
相关题目