题目内容
解析: (-3, 0)
易错原因:找不到确当的解答方法。本题最好用数形结合法。
(本题16分)在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.
(Ⅰ)求抛物线的方程;
(Ⅱ)是否存在点,使得直线与抛物线相切于点?若存在,求出点的坐标;若不存在,说明理由;
(Ⅲ)若点的横坐标为,直线与抛物线有两个不同的交点,与圆有两个不同的交点,求当时,的最小值.
(本小题满分15分)
如图所示,已知直线的斜率为且过点,抛物线, 直线与抛物线有两个不同的交点, 是抛物线的焦点,点为抛物线内一定点,点为抛物线上一动点.
(1)求的最小值;
(2)求的取值范围;
(3)若为坐标原点,问是否存在点,使过点的动直线与抛物线交于两点,且以为直径的圆恰过坐标原点, 若存在,求出动点的坐标;若不存在,请说明理由.
(本小题满分13分)
已知命题:方程表示焦点在y轴上的椭圆; 命题:直线
与抛物线 有两个交点
(I)若为真命题,求实数的取值范围
(II)若,求实数的取值范围。