搜索
题目内容
已知
且
,则实数
的值等于_________
试题答案
相关练习册答案
练习册系列答案
成功一号名卷天下系列答案
小夫子全能检测系列答案
同步导练系列答案
卓越英语系列答案
时代新课程系列答案
核心考卷系列答案
精英教程100分攻略系列答案
轻轻松松系列答案
心算口算巧算系列答案
三维数字课堂系列答案
相关题目
(填空题压轴题:考查函数的性质,字母运算等)
设函数f(x)的定义域为D,如果存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-2a,若f(x)为R上的“2011型增函数”,则实数a的取值范围是
.
若函数f(x)为定义域D上单调函数,且存在区间[a,b]⊆D(其中a<b),使得当x∈[a,b]时,f(x)的取值范围恰为[a,b],则称函数f(x)是D上的正函数,区间[a,b]叫做等域区间.
(1)已知
f(x)=
x
1
2
是[0,+∞)上的正函数,求f(x)的等域区间;
(2)试探究是否存在实数m,使得函数g(x)=x
2
+m是(-∞,0)上的正函数?若存在,请求出实数m的取值范围;若不存在,请说明理由.
对于定义在集合D上的函数y=f(x),若f(x)在D上具有单调性,且存在区间[a,b]⊆D(其中a<b),使当x∈[a,b]时,
f(x)的值域是[a,b],则称函数f(x)是D上的正函数,区间[a,b]称为f(x)的“等域区间”.
(1)已知函数
f(x)=
x
是[0,+∞)上的正函数,试求f(x)的等域区间.
(2)试探究是否存在实数k,使函数g(x)=x
2
+k是(-∞,0)上的正函数?若存在,求出k的取值范围;若不存在,请说明理由.
已知函数f(x)=mx
3
+nx
2
(m、n∈R,m≠0)的图象在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x
1
<x
2
<1,关于x的方程:
f′(x)-
f(
x
2
)-f(
x
1
)
x
2
-
x
1
=0
在(x
1
,x
2
)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x
0
,使得
f′(
x
0
)=
f(b)-f(a)
b-a
.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,
b-a
b
<ln
b
a
<
b-a
a
(可不用证明函数的连续性和可导性).
若函数f(x)为定义域D上单调函数,且存在区间[a,b]
D(其中a<b),使得当x∈[a,b]时,f(x)的取值范围恰为[a,b],则称函数f(x)是D上的正函数,区间[a,b]叫做等域区间,
(1)已知
是[0,+∞)上的正函数,求f(x)的等域区间;
(2)试探究是否存在实数m,使得函数g(x)=x
2
+m是(-∞,0)上的正函数?若存在,请求出实数m的取值范围;若不存在,请说明理由。
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案