题目内容

【题目】已知函数f(x)=|x+1|+|x﹣2|,不等式f(x)≥t对x∈R恒成立.
(1)求t的取值范围;
(2)记t的最大值为T,若正实数a,b满足a2+b2=T,求证:

【答案】
(1)解:f(x)=|x+1|+|2﹣x|≥|x+1+2﹣x|=3,所以t≤3
(2)证明:由(1)知T=3,所以a2+b2=3(a>0,b>0)

因为a2+b2≥2ab,所以 ,又因为

所以 (当且仅当a=b时取“=”):


【解析】(1)利用绝对值三角不等式求出f(x)的最小值,即可求t的取值范围;(2)求出t的最大值为T,化简a2+b2=T,利用基本不等式证明:
【考点精析】掌握不等式的证明是解答本题的根本,需要知道不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网