题目内容

10.已知等差数列{an}中,a1=1,a7=-11,
(1)求数列{an}的通项公式;
(2)若数列{an}的前k项和Sk=-80,求k的值.

分析 (1)利用等差数列的通项公式即可得出.
(2)利用等差数列的求和公式即可得出.

解答 解:(1)设等差数列{an}的公差为d,∵a1=1,a7=-11,∴-11=1+6d,解得d=-2.
∴an=1-2(n-1)=3-2n.
(2)Sk=-80=$\frac{k(1+3-2k)}{2}$,化为:k2-2k-80=0,k∈N*,解得k=10.

点评 本题考查了等差数列通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网