题目内容
已知A,B是椭圆
+
=1(a>b>0)和双曲线
-
=1(a>0,b>0)的公共顶点.过坐标原点O作一条射线与椭圆、双曲线分别交于M,N两点,直线MA,MB,NA,NB的斜率分别记为k1,k2,k3,k4,则下列关系正确的是( )
| x2 |
| a2 |
| y2 |
| b2 |
| x2 |
| a2 |
| y2 |
| b2 |
| A.k1+k2=k3+k4 | B.k1+k3=k2+k4 |
| C.k1+k2=-(k3+k4) | D.k1+k3=-(k2+k4) |
设M(x,y),则k1+k2=
+
=
∵
+
=1(a>b>0),∴
=-
,∴k1+k2=-
设N(x′,y′),则k3+k4=
+
=
∵
-
=1(a>0,b>0),∴
=
,∴k3+k4=
∵O,M,N共线
∴
=
∴k1+k2=-(k3+k4)
故选C.
| y |
| x+a |
| y |
| x-a |
| 2xy |
| x2-a2 |
∵
| x2 |
| a2 |
| y2 |
| b2 |
| y |
| x2-a2 |
| b2 |
| a2y |
| 2b2x |
| a2y |
设N(x′,y′),则k3+k4=
| y′ |
| x′+a |
| y′ |
| x′-a |
| 2x′y′ |
| x′2-a2 |
∵
| x′2 |
| a2 |
| y′2 |
| b2 |
| y′ |
| x′2-a2 |
| b2 |
| a2y′ |
| 2b2x′ |
| a2y′ |
∵O,M,N共线
∴
| y |
| x |
| y′ |
| x′ |
∴k1+k2=-(k3+k4)
故选C.
练习册系列答案
相关题目