题目内容

求函数f(x)=tan2x+2atanx+5,x∈[
π
4
π
2
)
的值域(其中a为常数).
x∈[
π
4
π
2
)
,∴tanx≥1.令 tanx=t≥1,则函数f(x)=h(t)=t2+2at+5,对称轴为 t=-a,

当a≥-1时,-a≤1,t=1时,函数 h(t)有最小值为6+2a,原函数值域为[6+2a,+∞).
当a<-1时,-a>1,t=-a 时,函数 h(t)有最小值为 5-a2,原函数值域为[5-a2,+∞).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网