题目内容

5.已知函数f(x)=a(x-$\frac{1}{x}$)-lnx(x∈R).
(1)若a=1,求曲线y=f(x)在点(1,f(x))处的切线方程;
(2)若函数f(x)在其定义域内为增函数,求a的取值范围.

分析 (1)当a=1时,f(x)=x-$\frac{1}{x}$-lnx,(x>0),f′(x)=1+$\frac{1}{{x}^{2}}$-$\frac{1}{x}$,可得f′(1)=1,又f(1)=0,利用点斜式即可得出;
(2)f′(x)=a+$\frac{a}{{x}^{2}}$-$\frac{1}{x}$=$\frac{a{x}^{2}-x+a}{{x}^{2}}$,函数f(x)在其定义域内为增函数,f′(x)≥0在其定义域内恒成立,即$a≥\frac{x}{{x}^{2}+1}$,再利用基本不等式的性质即可得出.

解答 解:(1)当a=1时,f(x)=x-$\frac{1}{x}$-lnx,(x>0),
f′(x)=1+$\frac{1}{{x}^{2}}$-$\frac{1}{x}$,
∴f′(1)=1,又f(1)=0,
∴曲线y=f(x)在点(1,f(x))处的切线方程为y=x-1;
(2)f′(x)=a+$\frac{a}{{x}^{2}}$-$\frac{1}{x}$=$\frac{a{x}^{2}-x+a}{{x}^{2}}$,
∵函数f(x)在其定义域内为增函数,
∴f′(x)≥0在其定义域内恒成立,
∴$a≥\frac{x}{{x}^{2}+1}$,
∵x>0,∴$\frac{x}{{x}^{2}+1}=\frac{1}{x+\frac{1}{x}}$$≤\frac{1}{2\sqrt{x•\frac{1}{x}}}$=$\frac{1}{2}$.
∴$a≥\frac{1}{2}$,
∴a的取值范围是$[\frac{1}{2},+∞)$.

点评 本题考查了利用导数研究函数的单调性、几何意义、切线方程、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网