题目内容

已知椭圆的左、右焦点分别为F1F2,过F1的直线交椭圆于BD两点,过F2的直线交椭圆于AC两点,且ACBD,垂足为P.

(Ⅰ)设P点的坐标为(x0y0),证明:

(Ⅱ)求四过形ABCD的面积的最小值

证明

(Ⅰ)椭圆的半焦距

知点在以线段为直径的圆上,

所以,

(Ⅱ)()当的斜率存在且时,的方程为,代入椭圆方程,并化简得

,则

因为相交于点,且的斜率为

所以,

四边形的面积

时,上式取等号.

()当的斜率或斜率不存在时,四边形的面积

综上,四边形的面积的最小值为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网