题目内容
(2012•江西模拟)已知数列{
}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足Sn=
.
(Ⅰ)求a的值并证明数列{
}为等差数列;
(Ⅱ)令pn=
+
,是否存在正整数M,使不等式p1+p2+…+pn-2n≤M恒成立,若存在,求出M的最小值,若不存在,说明理由.
| a | n |
| n(an-a1) |
| 2 |
(Ⅰ)求a的值并证明数列{
| a | n |
(Ⅱ)令pn=
| Sn+2 |
| Sn+1 |
| Sn+1 |
| Sn+2 |
分析:(Ⅰ)n=1代入数列递推式,可得a的值;由a1=0得Sn=
,则Sn+1=
,两式相减,并整理,可得(n-1)an+1=nan,再写一式nan+2=(n+1)an+1,两式相减,可得an+2-an+1=an+1-an,从而可得结论;
(Ⅱ)先表示出Pn,再利用裂项法求和,即可求得最小的正整数.
| nan |
| 2 |
| (n+1)an+1 |
| 2 |
(Ⅱ)先表示出Pn,再利用裂项法求和,即可求得最小的正整数.
解答:解:(Ⅰ)由已知,得S1=
=a1=a,∴a=0….(2分)
由a1=0得Sn=
,则Sn+1=
,
∴2(Sn+1-Sn)=(n+1)an+1-nan,即2an+1=(n+1)an+1-nan,
于是有(n-1)an+1=nan,并且nan+2=(n+1)an+1,
∴nan+2-(n-1)an+1=(n+1)an+1-nan,即n(an+2-an+1)=n(an+1-an)
则有an+2-an+1=an+1-an,
∴{an}为等差数列;….(7分)
(Ⅱ)∵Sn=
,∴Pn=
+
=2+
-
∴P1+P2+P3+…+Pn-2n=(2+
-
)+(2+
-
)+…+(2+
-
)-2n=2+1-
-
;由n是整数可得P1+P2+P3+…+Pn-2n<3,
故存在最小的正整数M=3,使不等式P1+P2+P3+…+Pn-2n≤M恒成立….(12分)
| 1•(a-a) |
| 2 |
由a1=0得Sn=
| nan |
| 2 |
| (n+1)an+1 |
| 2 |
∴2(Sn+1-Sn)=(n+1)an+1-nan,即2an+1=(n+1)an+1-nan,
于是有(n-1)an+1=nan,并且nan+2=(n+1)an+1,
∴nan+2-(n-1)an+1=(n+1)an+1-nan,即n(an+2-an+1)=n(an+1-an)
则有an+2-an+1=an+1-an,
∴{an}为等差数列;….(7分)
(Ⅱ)∵Sn=
| n(n-1)p |
| 2 |
| ||
|
| ||
|
| 2 |
| n |
| 2 |
| n+2 |
∴P1+P2+P3+…+Pn-2n=(2+
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 2 |
| 4 |
| 2 |
| n |
| 2 |
| n+2 |
| 2 |
| n+1 |
| 2 |
| n+2 |
故存在最小的正整数M=3,使不等式P1+P2+P3+…+Pn-2n≤M恒成立….(12分)
点评:本题考查数列递推式,考查等差数列的证明,考查裂项法求数列的和,正确运用数列递推式是关键.
练习册系列答案
相关题目