题目内容

(2012•江西模拟)已知数列{
a
 
n
}
有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足Sn=
n(an-a1)
2

(Ⅰ)求a的值并证明数列{
a
 
n
}
为等差数列;
(Ⅱ)令pn=
Sn+2
Sn+1
+
Sn+1
Sn+2
,是否存在正整数M,使不等式p1+p2+…+pn-2n≤M恒成立,若存在,求出M的最小值,若不存在,说明理由.
分析:(Ⅰ)n=1代入数列递推式,可得a的值;由a1=0得Sn=
nan
2
,则Sn+1=
(n+1)an+1
2
,两式相减,并整理,可得(n-1)an+1=nan,再写一式nan+2=(n+1)an+1,两式相减,可得an+2-an+1=an+1-an,从而可得结论;
(Ⅱ)先表示出Pn,再利用裂项法求和,即可求得最小的正整数.
解答:解:(Ⅰ)由已知,得S1=
1•(a-a)
2
=a1=a
,∴a=0….(2分)
由a1=0得Sn=
nan
2
,则Sn+1=
(n+1)an+1
2

∴2(Sn+1-Sn)=(n+1)an+1-nan,即2an+1=(n+1)an+1-nan
于是有(n-1)an+1=nan,并且nan+2=(n+1)an+1
∴nan+2-(n-1)an+1=(n+1)an+1-nan,即n(an+2-an+1)=n(an+1-an
则有an+2-an+1=an+1-an
∴{an}为等差数列;….(7分)
(Ⅱ)∵Sn=
n(n-1)p
2
,∴Pn=
(n+2)(n+1)p
2
(n+1)np
2
+
(n+1)np
2
(n+2)(n+1)p
2
=2+
2
n
-
2
n+2

P1+P2+P3+…+Pn-2n=(2+
2
1
-
2
3
)+(2+
2
2
-
2
4
)+…+(2+
2
n
-
2
n+2
)-2n
=2+1-
2
n+1
-
2
n+2
;由n是整数可得P1+P2+P3+…+Pn-2n<3,
故存在最小的正整数M=3,使不等式P1+P2+P3+…+Pn-2n≤M恒成立….(12分)
点评:本题考查数列递推式,考查等差数列的证明,考查裂项法求数列的和,正确运用数列递推式是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网