题目内容

f(x)=ax+
a
x
-3lnx
在区间[1,2]上为单调函数,则a的取值范围是______.
f(x)=ax+
a
x
-3lnx
,得:f(x)=a-
a
x2
-
3
x
=
ax2-3x-a
x2

令g(x)=ax2-3x-a,
因为f(x)=ax+
a
x
-3lnx
在区间[1,2]上为单调函数,
则f(x)在(1,2)上恒大于等于0或恒小于等于0,
即g(x)=ax2-3x-a在(1,2)上恒大于等于0或恒小于等于0,
也就是g(1)•g(2)≥0恒成立,
即(a-3-a)(4a-6-a)≥0,解得a≤2.
故答案为a≤2.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网