题目内容

已知:A(5,0),B(0,5),C(cosα,sinα),α∈(0,π).
(1)若
AC
BC
,求sin2α;
(2)若|
OA
+
OC
|=
31
,求
OB
OC
的夹角.
(1)
AC
=(cosα-5,sinα),
BC
=(cosα,sinα-5)
,(1分)
AC
BC
,∴
AC
BC
=cosα(cosα-5)+sinα(sinα-5)=0

sinα+cosα=
1
5
,(4分)
(sinα+cosα)2=
1
25
,∴sin2α=-
24
25
,(7分)
(2)
OA
+
OC
=(5+cosα,sinα)

|
OA
+
OC
|=
(5+cosα)2+sin2α
=
31
(9分)
cosα=
1
2
又α∈(0,π),∴sinα=
3
2
C(
1
2
3
2
)

OB
OC
=
5
3
2
,(11分)
OB
OC
夹角为θ,则cosθ=
OB
OC
|
OB
|•|
OC
|
=
5
2
3
5•1
=
3
2

∴θ=30°,
OB
OC
夹角为30°.(14分).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网