题目内容
设等比数列{an}的前n项和为Sn,若S6:S3=3,则S9:S6=________.
分析:根据等比数列的性质得到Sn,S2n-Sn,S3n-S2n成等比列出关系式,又S6:S3=3,表示出S3,代入到列出的关系式中即可求出S9:S6的值.
解答:因为等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n成等比,(Sn≠0)
所以
所以
整理得
故答案为:
点评:此题考查学生灵活运用等比数列的性质化简求值,是一道基础题.解本题的关键是根据等比数列的性质得到Sn,S2n-Sn,S3n-S2n成等比.
练习册系列答案
相关题目
设等比数列{an}的前n项和为Sn,若8a2+a5=0,则下列式子中数值不能确定的是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
设等比数列{an}的前n项和为Sn,若
=3,则
=( )
| S6 |
| S3 |
| S9 |
| S6 |
A、
| ||
B、
| ||
C、
| ||
| D、1 |