题目内容
CBA篮球总决赛采取五局三胜制,即有一队胜三场比赛就结束,预计本次决赛的两队实力相当,且每场比赛门票收入100万元、问:
(1)在本次比赛中,门票总收入是300万元的概率是多少?
(2)在本次比赛中,门票总收入不低于400万元的概率是多少?
(1)在本次比赛中,门票总收入是300万元的概率是多少?
(2)在本次比赛中,门票总收入不低于400万元的概率是多少?
(1)本次比赛,门票总收入是300万元,则前3场由某个队连胜,
根据题意,本次决赛的两队实力相当,即每个队取胜的概率均为
,
其概率为p1=
×
×
+
×
×
=
,
答:门票总收入是300万元的概率是
,
(2)本次比赛,门票总收入不低于400万元,则至少打4场,
而结束比赛最少要比3场,
分析可得,“比赛3场”与“至少比赛4场”为对立事件,
故其概率为p2=1-
=
;
答:门票总收入不低于400万元的概率为
.
根据题意,本次决赛的两队实力相当,即每个队取胜的概率均为
| 1 |
| 2 |
其概率为p1=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 4 |
答:门票总收入是300万元的概率是
| 1 |
| 4 |
(2)本次比赛,门票总收入不低于400万元,则至少打4场,
而结束比赛最少要比3场,
分析可得,“比赛3场”与“至少比赛4场”为对立事件,
故其概率为p2=1-
| 1 |
| 4 |
| 3 |
| 4 |
答:门票总收入不低于400万元的概率为
| 3 |
| 4 |
练习册系列答案
相关题目