题目内容
【题目】下列有关命题的说法正确的是( )
A.
,使得
成立.
B. 命题
:任意
,都有
,则
:存在
,使得
.
C. 命题“若
且
,则
且
”的逆命题为真命题.
D. 若数列
是等比数列,
则
是
的必要不充分条件.
【答案】D
【解析】
对于A选项,方程无解,由此判断命题不成立.对于B选项,用全称命题的否定是特称命题来判断是否正确.对于C选项,写出逆命题后判断命题是否为真命题.对于D选项,利用等比数列的性质,并举特殊值来判断命题是否为真命题.
由
,得
,其判别式
,此方程无解,故A选项错误.对于B选项,全称命题的否定是特称命题,
应改为
,故B选项错误.对于C选项,原命题的逆命题是“若
且
,则
且
”,如
,满足
且
但不满足
且
,所以为假命题.对于D选项,若
,为等比数列,
,但
;另一方面,根据等比数列的性质,若
,则
.所以
是
的必要不充分条件.故选D.
【题目】某客户准备在家中安装一套净水系统,该系统为三级过滤,使用寿命为十年.如图所示,两个一级过滤器采用并联安装,二级过滤器与三级过滤器为串联安装。
![]()
其中每一级过滤都由核心部件滤芯来实现。在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立),三级滤芯无需更换,若客户在安装净水系统的同时购买滤芯,则一级滤芯每个
元,二级滤芯每个
元.若客户在使用过程中单独购买滤芯,则一级滤芯每个
元,二级滤芯每个
元。现需决策安装净水系统的同时购滤芯的数量,为此参考了根据
套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中图是根据
个一级过滤器更换的滤芯个数制成的柱状图,表是根据
个二级过滤器更换的滤芯个数制成的频数分布表.
![]()
二级滤芯更换频数分布表
二级滤芯更换的个数 |
|
|
频数 |
|
|
以
个一级过滤器更换滤芯的频率代替
个一级过滤器更换滤芯发生的概率,以
个二级过滤器更换滤芯的频率代替
个二级过滤器更换滤芯发生的概率.
(1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为
的概率;
(2)记
表示该客户的净水系统在使用期内需要更换的一级滤芯总数,求
的分布列及数学期望;
(3)记
,
分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.若
,且
,以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定
,
的值.
【题目】2019年春节档有多部优秀电影上映,其中《流浪地球》是比较火的一部.某影评网站统计了100名观众对《流浪地球》的评分情况,得到如下表格:
评价等级 | ★ | ★★ | ★★★ | ★★★★ | ★★★★★ |
分数 | 0~20 | 2140 | 4160 | 61~80 | 81100 |
人数 | 5 | 2 | 12 | 6 | 75 |
(1)根据以上评分情况,试估计观众对《流浪地球》的评价在四星以上(包括四星)的频率;
(2)以表中各评价等级对应的频率作为各评价等级对应的概率,假设每个观众的评分结果相互独立.
(i)若从全国所有观众中随机选取3名,求恰有2名评价为五星1名评价为一星的概率;
(ii)若从全国所有观众中随机选取16名,记评价为五星的人数为X,求X的方差.