题目内容
【题目】设a,b∈R且a<b,若a3eb=b3ea , 则下列结论中一定正确的个数是( ) ①a+b>6;②ab<9;③a+2b>9;④a<3<b.
A.1
B.2
C.3
D.4
【答案】D
【解析】解:令f(x)=
,则f′(x)=
, 可知:x>3时,f′(x)<0,函数f(x)单调递减;
x>3时,f′(x)≥0,
函数f(x)单调递增.
x=3时,函数f(x)取得极大值即最大值.
∵f(a)=f(b),a<b.
∴0<a<3<b,a+b>6;ab<9;a+2b>9.
因此正确的答案为4个.
故选:D.![]()
【考点精析】本题主要考查了利用导数研究函数的单调性和函数的极值与导数的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间
内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减;求函数
的极值的方法是:(1)如果在
附近的左侧
,右侧
,那么
是极大值(2)如果在
附近的左侧
,右侧
,那么
是极小值才能正确解答此题.
练习册系列答案
相关题目