题目内容
【题目】一半径为
米的水轮如图所示,水轮圆心
距离水面
米;已知水轮按逆时针做匀速转动,每
秒转一圈,如果当水轮上点
从水中浮现时(图中点
)开始计算时间.
![]()
(1)以水轮所在平面与水面的交线为
轴,以过点
且与水面垂直的直线为
轴,建立如图所示的直角坐标系,试将点
距离水面的高度
(单位:米)表示为时间
(单位:秒)的函数;
(2)在水轮转动的任意一圈内,有多长时间点
距水面的高度超过
米?
【答案】(1)
;(2)有
时间点
距水面的高度超过
米.
【解析】
(1)设
,根据题意求得
、
的值,以及函数
的最小正周期,可求得
的值,根据
的大小可得出
的值,由此可得出
关于
的函数解析式;
(2)由
得出
,令
,求得
的取值范围,进而可解不等式
,可得出
的取值范围,进而得解.
(1)设水轮上圆心
正右侧点为
,
轴与水面交点为
,如图所示:
![]()
设
,由
,
,可得
,所以
.
,
,
,
由题意可知,函数
的最小正周期为
,
,
所以点
距离水面的高度
关于时间
的函数为
;
(2)由
,得
,
令
,则
,
由
,解得
,又
,
所以在水轮转动的任意一圈内,有
时间点
距水面的高度超过
米.
【题目】“共享单车”的出现,为我们提供了一种新型的交通方式。某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:
![]()
(1)根据茎叶图,比较两城市满意度评分的平均值的大小及方差的大小(不要求计算出具体值,给出结论即可);
(2)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此2×2列联表,并据此样本分析是否有95%的把握认为城市拥堵与认可共享单车有关;
A | B | 合计 | |
认可 | |||
不认可 | |||
合计 |
(3)在A,B城市对此种交通方式“认可”的用户中按照分层抽样的方法抽取6人,若在此6人中推荐2人参加“单车维护”志愿活动,求A城市中至少有1人的概率。
参考数据如下:(下面临界值表供参考)
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式
,其中
)
【题目】已知某种植物每日平均增长高度
(单位:
)与每日光照时间
(单位:
)之间的关系有如下一组数据:
| 6 | 7 | 8 | 9 | 10 |
| 3.5 | 5.2 | 7 | 8.6 | 10.7 |
(1)求
关于
的回归直线方程;
(2)计算相关指数
的值,并说明回归模型拟合程度的好坏;
(3)若某天光照时间为8.5小时, 预测该天这种植物的平均增长高度(结果精确到0.1)
参考公式及数据:
,
,
,
,,
![]()
【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.
非一线城市 | 一线城市 | 总计 | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
总计 | 58 | 42 | 100 |
附表:
|
|
|
|
|
|
|
|
|
|
由
算得,
,
参照附表,得到的正确结论是
A. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”
B. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”
C. 有99%以上的把握认为“生育意愿与城市级别有关”
D. 有99%以上的把握认为“生育意愿与城市级别无关”
【题目】为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取
名学生的成绩进行统计分析,结果如下表:(记成绩不低于
分者为“成绩优秀”)
分数 |
|
|
|
|
|
|
|
甲班频数 |
|
|
|
|
|
|
|
乙班频数 |
|
|
|
|
|
|
|
(Ⅰ)由以上统计数据填写下面的
列联表,并判断是否有
以上的把握认为“成绩优秀与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
(Ⅱ)现从上述样本“成绩不优秀”的学生中,抽取
人进行考核,记“成绩不优秀”的乙班人数为
,求
的分布列和期望.
参考公式:
,其中
.
临界值表
|
|
|
|
|
|
|
|
|
|