题目内容
已知数列{an},a1=1,an=2an-1+2-n(n≥2).(1)设bn=
| an+1 |
| 2n+1 |
| an |
| 2n |
(2)求数列{an}的前n项和Sn.
分析:(1)由题意数列{an},a1=1,an=2an-1+2-n(n≥2),对此式子变形,利用bn=
-
(n≥1),借助等比数列的定义即可求得;
(2)有(1)得,?n≥1时
-
=2-2(n+!),从而
可以求得,进而求得an+1,再有通项公式可以求得此数列的前n项的和.
| an+1 |
| 2n+1 |
| an |
| 2n |
(2)有(1)得,?n≥1时
| an+1 |
| 2n+1 |
| an |
| 2n |
| an+1 |
| 2n+1 |
解答:解:(1)依题意,?n≥1,bn=
-
=
-
=2-2(n+!),
=
=2-2是非零常数,所以{bn}是等比数列;
(2)由(1)得,?n≥1时
-
=2-2(n+!),
从而
=(
-
)+(
-
)++(
-
)+
=2-2(n+1)+2-2n++2-4+
=2-2(n+1)+2-2n++2-4+
=
-
,
∴an+1=
-
,
左式取n=0得
-
=1=a1,
所以?n≥1有an=
-
,
所以Sn=
×(2n+2n-1++22+2)-
×(2-n+2-(n-1)++2-2+2-1),
=
×(2n+1-2)-
×(1-2-n)=
×(7×2n+2-n+1-9).
| an+1 |
| 2n+1 |
| an |
| 2n |
| 2an+2-(n+1) |
| 2n+1 |
| an |
| 2n |
| bn+1 |
| bn |
| 2-2(n+2) |
| 2-2(n+1) |
(2)由(1)得,?n≥1时
| an+1 |
| 2n+1 |
| an |
| 2n |
从而
| an+1 |
| 2n+1 |
| an+1 |
| 2n+1 |
| an |
| 22 |
| an |
| 2n |
| an-1 |
| 2n-1 |
| a2 |
| 22 |
| a1 |
| 2 |
| a1 |
| 2 |
=2-2(n+1)+2-2n++2-4+
| 1 |
| 2 |
=2-2(n+1)+2-2n++2-4+
| 1 |
| 2 |
| 7 |
| 12 |
| 4-(n+1) |
| 3 |
∴an+1=
| 7×2n+1 |
| 12 |
| 2-(n+1) |
| 3 |
左式取n=0得
| 7×21 |
| 12 |
| 2-1 |
| 3 |
所以?n≥1有an=
| 7×2n |
| 12 |
| 2-n |
| 3 |
所以Sn=
| 7 |
| 12 |
| 1 |
| 3 |
=
| 7 |
| 12 |
| 1 |
| 3 |
| 1 |
| 6 |
点评:此题考查了构造新数列,还考查了等比数列的定义及已知数列的通项公式分析通项的特点选择分组求和及等比数列的求和公式.
练习册系列答案
相关题目