题目内容
已知函数f(x)=x2+px+q,其中x,p,q∈R,集合A={x|f(x)=x},B={x|f[f(x)]=x},若A={-1,3},则B=________.
分析:由A={x|f(x)=x}={x|x2+px+q=x}={x|x2+(p-1)x+q=0}={-1,3},结合方程根与系数关系可求p,q,进而可求,f(x),然后代入B={x|f[f(x)]=x}整理可求
解答:∵A={x|f(x)=x}={x|x2+px+q=x}={x|x2+(p-1)x+q=0}={-1,3}
∴-1,3是方程x2+(p-1)x+q=0的根
∴
∴B={x|f[f(x)]=x}={x|f(x2-x-3)=x}
={x|(x2-x-3)2-(x2-x-3)-3=x}
化简可得,(x2-x-3)2-x2=0
∴(x2-3)(x2-2x-3)=0
∴x=
∴B={
故答案为:{
点评:本题主要考查了二次函数与二次方程之间关系的相互转化,方程的根与系数关系的应用.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|