题目内容

5.已知椭圆与双曲线${x^2}-\frac{y^2}{3}=1$共同焦点,它们的离心率之和为$\frac{5}{2}$,则此椭圆方程为(  )
A.$\frac{x^2}{4}+\frac{y^2}{8}=1$B.$\frac{x^2}{12}+\frac{y^2}{16}=1$C.$\frac{x^2}{8}+\frac{y^2}{4}=1$D.$\frac{x^2}{16}+\frac{y^2}{12}=1$

分析 求得双曲线的焦点和离心率,可设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),可得c=2,即a2-b2=4,运用离心率公式解方程可得a,b,进而得到椭圆方程.

解答 解:双曲线${x^2}-\frac{y^2}{3}=1$的焦点为(±2,0),
离心率为2,
由题意可设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
可得c=2,即a2-b2=4,
又$\frac{c}{a}$=$\frac{1}{2}$,解得a=4,b=2$\sqrt{3}$,
可得椭圆的方程为$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1.
故选:D.

点评 本题考查椭圆的方程的求法,注意运用双曲线的方程和性质,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网